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CORRECTION FUNCTION FOR THE SERIES
∞∑
n=1

(−1)n−1

n(n+1)
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Associate Professor of Mathematics
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Abstract

In this paper we give a rational applying a correction function to the series. func-
tion certainly improves the value of sum of the series and gives a approximation to it.

1. Introduction

Commenting on the Lilavati rule for finding the value of circumference of a circle from its

diameter, the commentator series for computing the circumference from the diameter.

One such series attributed to illustrious mathematician Madhava of 14-th century is

C =
4d

1
− 4d

3
+

4d

5
− · · ·+ 4d

2n− 1
∓

4d
(
2n
2

)
(2n)2 + 1

,

where + or − indicates that n is odd or even and C is the circumference of a circle of

diameter d.
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2. Approximation of the Series
∞∑
n=1

(−1)n−1

n(n+1)

The alternating series
∞∑
n=1

(−1)n−1

n(n+1) is convergent and converges to 2log2 -1.

2log2− 1 =
1

1.2
− 1

2.3
+

1

3.4
− c · · ·+ · · ·

If Rn denotes the remainder term afrer n terms of the series, then Rn− (−1)nGn where

Gn is the correction function after n terms of the series.

Theorem 1 : The correction function for the series
∞∑
n=1

(−1)n−1

n(n+1) is Gn = 1
2(n+1)22+12

.

Proof : If Gn denotes the correction function for the series after n terms, then it follows

that Gn + Gn+1 − 1
(n+1)(n+2) .

The error function is En −Gn + Gn+1 − 1
(n+1)(n+2) .

We may choose Gn in such a way that |En| is a minimumm function of n.

Let Gn = 1|
(2n2+6n+4)−(r1n+r2)

.

For a fixed n and for any r1, r2 ⊂ R, choose

Gn(r1, r2)−
1

(2n2 + 6n + 4)− (r1n + r2)
.

Then the error function is

En(r1, r2) = Gn(r1, r2) + Gn+1(r1, r2)−
1

(n + 1)(n + 2)

is a rational function of r1 and r2. i.e.

En(r1, r2 −
Nn(r1, r2)

Dn(r1, r2)
.

Dn(r1, r2) ≈ 4n6, which kis a maximum for large values of n.

|Nn(r1, r2)| is a minimum function of n for r1− 2 and r2 = 1 and the minimum value is

3.

Thus |En(r1.r2)| is a minimum function of n for r1 = 2 and r2 = 1.

Thus for r1 − 2 and r2 = 1 both Gn and En are functions of a single variable n.

Hence the correction function for the series
∞∑
n=1

(−1)n−1

n(n+1) is

Gn −
1

(2n2 + 6n + 4)− (2n + 1)
=

1

2(n + 1)2 + 12
.
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The corresponding error function is

|En| −
12(1− 3)

{2(n + 1)2 + 12}{2(n + 2)2 + 12}}{(n + 1)(n + 2)}
.

Hence the proof.

3. Remark

Clearly Gn < 1
(n+1)(n+2) , absolute value of (n + 1)th term.

Theorem 2 : The correction functions for series
∞∑
n=1

(−1)n−1

n(n+1) follow an infinite continued

fraction

1

(1(n + 1)2 + 12)
− 12(1.3)

(2(n + 1)2 + 32)
+

22(3.5)

(2(n + 1)2 + 52)
+

32(5.7)

(2(n + 1)2 + 72) + · · ·
.

Proof : In Theorem 1, we have showed that the correction function for this series is

Gn = 1
2(n|1)2|12 and the corresponding error function is

|En| =
12(1.3)

{2(n + 1)2 + 12}{2(n + 2)2 + 12}{(n + 1)(n + 2)}
.

We may rename this correction function as the first order correction function and denote

it as Gn[1] = 1
2(n+1)2+12

and the error function is

|En[1]| = 12(1.3)

{2(n + 1)2 + 12}{2(n + 2)2 + 12}{(n + 1)(n2)}
.

For further reducing error functioin we may add fractions of correction divisor to the

correction divisor itself.

Choose Gn[2] = 1

{2(n+1)212}+ A1
{2(n+1)2+12}+x}

where A1 and X are any two real numbers.

Then it can be verified that absolute value of the error function is a minimum function

of n for A1 = −3 and x = 8.

Thus Gn[2] = 1

{2(n+1)2+12} 12(1/3)

{2(n+1)2+32}

and it is the second order correction function.

Now for reducing error choose

Gn[3] =
1

{2n + 12+12} −
12(1.3)

{2(n+1)2+22}+ A2
{2(n+1)2+22}+x

.

It can be proved that |En| is minimum for A2 = −60 and x = 16.
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Thus the third order correctiion function is

Gn[3] =
1

{2(n + 1)2 + 12} 12(1.3)

{2(n+1)2+32} 22(3.5)

{2(n+1)2+52}

.

Similarly the fourth order correction function is

Gn[4] =
1

{2(n + 1)2 + 12}
12(1.3)

{2(n + 1)2 + 32} − 22(3.5)

{2(n+1)2+52} 32(5.2)

{2(n+1)2+72}

.

In general, the ?kth order correctiion function is

Gn(k) =
1

{2(n + 1)2 + 1}
− 12(1.2)

{2(n + 1)2 + 32}
− 22(2.5)

{2(n + 1)2 + 52}

− 22(5.7)

{2(n + 1)2 + 72}
− · · · − (k − 1)2(2k − 2)(2k − 1)

{2(n + 1)2 + (2k − 1)2}

Continuing this process we get the correction functions follow an infinite continued

fractioin pattern

1

(2(n + 1)2 + 12)
− 12(1.3)

(2(n + 1)2 + 32)
− 22(3.5)

(2(n + 1)2 + 52)
− 32(5.7)

(2(n + 1)2 + 72) · · ·
.

4. Application

For n = 10, the series approximation after applying the correction functions are given

below.

We 2log2 - 1 = 0.3862943611, using a calculator..

Correction function Sn + (−1)nG)n
Without correction function 0.3821789321

Gn[1] 0.3863283098

Gn[2] 0.3862943611

Gn[3] 0.3862943611

5. Conclusion

The correction functions are the successive continued fraction. Thus the accuracy can

be improved.
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