Reprint

ISSN 0973-9424

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND ENGINEERING APPLICATIONS

(IJMSEA)

www.ascent-journals.com

International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 15 No. II (December, 2021), pp. 1-5

CORRECTION FUNCTION FOR THE SERIES $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$

DR KUMARI SREEJA S NAIR

Associate Professor of Mathematics Govt. Arts College, Kariavattom, Thiruvananthapuram, India

Abstract

In this paper we give a rational applying a correction function to the series. function certainly improves the value of sum of the series and gives a approximation to it.

1. Introduction

Commenting on the Lilavati rule for finding the value of circumference of a circle from its diameter, the commentator series for computing the circumference from the diameter. One such series attributed to illustrious mathematician Madhava of 14-th century is

$$C = \frac{4d}{1} - \frac{4d}{3} + \frac{4d}{5} - \dots + \frac{4d}{2n-1} \mp \frac{4d\left(\frac{2n}{2}\right)}{(2n)^2 + 1},$$

where + or - indicates that n is odd or even and C is the circumference of a circle of diameter d.

Key Words : Correction function, Error function.

ⓒ http://www.ascent-journals.com

2. Approximation of the Series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$

The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ is convergent and converges to $2\log 2$ -1.

$$2\log 2 - 1 = \frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} - c \dots + \dots$$

If R_n denotes the remainder term after *n* terms of the series, then $R_n - (-1)^n G_n$ where G_n is the correction function after *n* terms of the series.

Theorem 1: The correction function for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ is $G_n = \frac{1}{2(n+1)2^2+1^2}$. **Proof**: If G_n denotes the correction function for the series after n terms, then it follows that $G_n + G_{n+1} - \frac{1}{(n+1)(n+2)}$. The error function is $E_n - G_n + G_{n+1} - \frac{1}{(n+1)(n+2)}$.

We may choose G_n in such a way that $|E_n|$ is a minimum function of n.

Let
$$G_n = \frac{1}{(2n^2 + 6n + 4) - (r_1n + r_2)}$$

For a fixed n and for any $r_1, r_2 \subset R$, choose

$$G_n(r_1, r_2) - \frac{1}{(2n^2 + 6n + 4) - (r_1n + r_2)}$$

Then the error function is

$$E_n(r_1, r_2) = G_n(r_1, r_2) + G_{n+1}(r_1, r_2) - \frac{1}{(n+1)(n+2)}$$

is a rational function of r_1 and r_2 . i.e.

$$E_n(r_1, r_2 - \frac{N_n(r_1, r_2)}{D_n(r_1, r_2)}.$$

 $D_n(r_1, r_2) \approx 4n^6$, which kis a maximum for large values of n.

 $|N_n(r_1, r_2)|$ is a minimum function of n for $r_1 - 2$ and $r_2 = 1$ and the minimum value is 3.

Thus $|E_n(r_1.r_2)|$ is a minimum function of n for $r_1 = 2$ and $r_2 = 1$.

Thus for $r_1 - 2$ and $r_2 = 1$ both G_n and E_n are functions of a single variable n. Hence the correction function for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ is

$$G_n - \frac{1}{(2n^2 + 6n + 4) - (2n + 1)} = \frac{1}{2(n+1)^2 + 1^2}.$$

The corresponding error function is

$$|E_n| - \frac{1^2(1-3)}{\{2(n+1)^2 + 1^2\}\{2(n+2)^2 + 1^2\}\}\{(n+1)(n+2)\}}$$

Hence the proof.

3. Remark

Clearly $G_n < \frac{1}{(n+1)(n+2)}$, absolute value of $(n+1)^{th}$ term. **Theorem 2**: The correction functions for series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ follow an infinite continued fraction

$$\frac{1}{(1(n+1)^2+1^2)} - \frac{1^2(1.3)}{(2(n+1)^2+3^2)} + \frac{2^2(3.5)}{(2(n+1)^2+5^2)} + \frac{3^2(5.7)}{(2(n+1)^2+7^2)+\cdots}.$$

Proof: In Theorem 1, we have showed that the correction function for this series is $G_n = \frac{1}{2(n|1)^2|1^2}$ and the corresponding error function is

$$|E_n| = \frac{1^2(1.3)}{\{2(n+1)^2 + 1^2\}\{2(n+2)^2 + 1^2\}\{(n+1)(n+2)\}}$$

We may rename this correction function as the first order correction function and denote it as $G_n[1] = \frac{1}{2(n+1)^2+1^2}$ and the error function is

$$|E_n[1]| = \frac{1^2(1.3)}{\{2(n+1)^2 + 1^2\}\{2(n+2)^2 + 1^2\}\{(n+1)(n_2)\}}$$

For further reducing error function we may add fractions of correction divisor to the correction divisor itself.

Choose $G_n[2] = \frac{1}{\{2(n+1)^{2}1^2\} + \frac{A_1}{\{2(n+1)^2+1^2\}+x\}}}$ where A_1 and X are any two real numbers. Then it can be verified that absolute value of the error function is a minimum function of n for $A_1 = -3$ and x = 8. Thus $G_n[2] = \frac{1}{\{2(n+1)^2+1^2\}\frac{1^2(1/3)}{\{2(n+1)^2+3^2\}}}$ and it is the second order correction function.

Now for reducing error choose

$$G_n[3] = \frac{1}{\{2n + 1_{2+1^2}\} - \frac{1^2(1.3)}{\{2(n+1)^2 + 2^2\} + \frac{A_2}{\{2(n+1)^2 + 2^2\} + x}}}.$$

It can be proved that $|E_n|$ is minimum for $A_2 = -60$ and x = 16.

Thus the third order correctiion function is

$$G_n[3] = \frac{1}{\{2(n+1)^2 + 1^2\} \frac{1^2(1.3)}{\{2(n+1)^2 + 3^2\} \frac{2^2(3.5)}{\{2(n+1)^2 + 5^2\}}}}.$$

Similarly the fourth order correction function is

$$G_n[4] = \frac{1}{\{2(n+1)^2 + 1^2\}} \frac{1^2(1.3)}{\{2(n+1)^2 + 3^2\} - \frac{2^2(3.5)}{\{2(n+1)^2 + 5^2\}\frac{3^2(5.2)}{\{2(n+1)^2 + 7^2\}}}}.$$

In general, the k^{th} order correction function is

$$G_n(k) = \frac{1}{\{2(n+1)^2+1\}} - \frac{1^2(1.2)}{\{2(n+1)^2+3^2\}} - \frac{2^2(2.5)}{\{2(n+1)^2+5^2\}} - \frac{2^2(5.7)}{\{2(n+1)^2+7^2\}} - \dots - \frac{(k-1)^2(2k-2)(2k-1)}{\{2(n+1)^2+(2k-1)^2\}}$$

Continuing this process we get the correction functions follow an infinite continued fraction pattern

$$\frac{1}{(2(n+1)^2+1^2)} - \frac{1^2(1.3)}{(2(n+1)^2+3^2)} - \frac{2^2(3.5)}{(2(n+1)^2+5^2)} - \frac{3^2(5.7)}{(2(n+1)^2+7^2)\cdots}$$

4. Application

For n = 10, the series approximation after applying the correction functions are given below.

We $2\log 2 - 1 = 0.3862943611$, using a calculator...

Correction function	$S_n + (-1)^n G)_n$
Without correction function	0.3821789321
$G_n[1]$	0.3863283098
$G_n[2]$	0.3862943611
$G_n[3]$	0.3862943611

5. Conclusion

The correction functions are the successive continued fraction. Thus the accuracy can be improved.

References

- [1] Knopp K., Theory and Application of Infinite Series, Blackie and Son, (London and Glasgow.
- [2] Sankara and Narayana, Lilavati of Bhaskaracharya with the Kriyakramakari, an elaborate exposition of the rationals with introduction and appendices (sd) K. V. Sarma (Visvesvaranand Vedic Research Institute, Hushiarpur), (1975), 386-391.
- [3] Mallayya V. M., Proceedings of the Conference on Recent Trends in Mathematical Analysis, Allied Publishers Pvt. Ltd. ISBN 81-7764-399-1, (2003).
- [4] Hardy G. H., A Course of Pure Mathematics, (Tenth Edition), Cambridge at the University Press, (1963)
- [5] Knopp K., Infinite Sequences and Series, Dover (1956).