International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 15 No. II (December, 2021), pp. 1-5

CORRECTION FUNCTION FOR THE SERIES $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$

DR KUMARI SREEJA S NAIR

Associate Professor of Mathematics
Govt. Arts College, Kariavattom, Thiruvananthapuram, India

Abstract

In this paper we give a rational applying a correction function to the series. function certainly improves the value of sum of the series and gives a approximation to it.

1. Introduction

Commenting on the Lilavati rule for finding the value of circumference of a circle from its diameter, the commentator series for computing the circumference from the diameter.

One such series attributed to illustrious mathematician Madhava of 14-th century is

$$
C=\frac{4 d}{1}-\frac{4 d}{3}+\frac{4 d}{5}-\cdots+\frac{4 d}{2 n-1} \mp \frac{4 d\left(\frac{2 n}{2}\right)}{(2 n)^{2}+1}
$$

where + or - indicates that n is odd or even and C is the circumference of a circle of diameter d.

Key Words : Correction function, Error function.
(c) http: //www.ascent-journals.com

2. Approximation of the Series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$

The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ is convergent and converges to $2 \log 2-1$.

$$
2 \log 2-1=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-c \cdots+\cdots
$$

If R_{n} denotes the remainder term afrer n terms of the series, then $R_{n}-(-1)^{n} G_{n}$ where G_{n} is the correction function after n terms of the series.
Theorem 1: The correction function for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ is $G_{n}=\frac{1}{2(n+1) 2^{2}+1^{2}}$.
Proof: If G_{n} denotes the correction function for the series after n terms, then it follows that $G_{n}+G_{n+1}-\frac{1}{(n+1)(n+2)}$.
The error function is $E_{n}-G_{n}+G_{n+1}-\frac{1}{(n+1)(n+2)}$.
We may choose G_{n} in such a way that $\left|E_{n}\right|$ is a minimumm function of n.
Let $G_{n}=\frac{1 \mid}{\left(2 n^{2}+6 n+4\right)-\left(r_{1} n+r_{2}\right)}$.
For a fixed n and for any $r_{1}, r_{2} \subset R$, choose

$$
G_{n}\left(r_{1}, r_{2}\right)-\frac{1}{\left(2 n^{2}+6 n+4\right)-\left(r_{1} n+r_{2}\right)} .
$$

Then the error function is

$$
E_{n}\left(r_{1}, r_{2}\right)=G_{n}\left(r_{1}, r_{2}\right)+G_{n+1}\left(r_{1}, r_{2}\right)-\frac{1}{(n+1)(n+2)}
$$

is a rational function of r_{1} and r_{2}. i.e.

$$
E_{n}\left(r_{1}, r_{2}-\frac{N_{n}\left(r_{1}, r_{2}\right)}{D_{n}\left(r_{1}, r_{2}\right)} .\right.
$$

$D_{n}\left(r_{1}, r_{2}\right) \approx 4 n^{6}$, which kis a maximum for large values of n.
$\left|N_{n}\left(r_{1}, r_{2}\right)\right|$ is a minimum function of n for $r_{1}-2$ and $r_{2}=1$ and the minimum value is 3.

Thus $\left|E_{n}\left(r_{1} \cdot r_{2}\right)\right|$ is a minimum function of n for $r_{1}=2$ and $r_{2}=1$.
Thus for $r_{1}-2$ and $r_{2}=1$ both G_{n} and E_{n} are functions of a single variable n.
Hence the correction function for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ is

$$
G_{n}-\frac{1}{\left(2 n^{2}+6 n+4\right)-(2 n+1)}=\frac{1}{2(n+1)^{2}+1^{2}} .
$$

The corresponding error function is

$$
\left|E_{n}\right|-\frac{1^{2}(1-3)}{\left.\left\{2(n+1)^{2}+1^{2}\right\}\left\{2(n+2)^{2}+1^{2}\right\}\right\}\{(n+1)(n+2)\}}
$$

Hence the proof.

3. Remark

Clearly $G_{n}<\frac{1}{(n+1)(n+2)}$, absolute value of $(n+1)^{\text {th }}$ term.
Theorem 2 : The correction functions for series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$ follow an infinite continued fraction

$$
\frac{1}{\left(1(n+1)^{2}+1^{2}\right)}-\frac{1^{2}(1.3)}{\left(2(n+1)^{2}+3^{2}\right)}+\frac{2^{2}(3.5)}{\left(2(n+1)^{2}+5^{2}\right)}+\frac{3^{2}(5.7)}{\left(2(n+1)^{2}+7^{2}\right)+\cdots}
$$

Proof : In Theorem 1, we have showed that the correction function for this series is $G_{n}=\frac{1}{2(n \mid 1)^{2} \mid 1^{2}}$ and the corresponding error function is

$$
\left|E_{n}\right|=\frac{1^{2}(1.3)}{\left\{2(n+1)^{2}+1^{2}\right\}\left\{2(n+2)^{2}+1^{2}\right\}\{(n+1)(n+2)\}}
$$

We may rename this correction function as the first order correction function and denote it as $G_{n}[1]=\frac{1}{2(n+1)^{2}+1^{2}}$ and the error function is

$$
\left|E_{n}[1]\right|=\frac{1^{2}(1.3)}{\left\{2(n+1)^{2}+1^{2}\right\}\left\{2(n+2)^{2}+1^{2}\right\}\left\{(n+1)\left(n_{2}\right)\right\}}
$$

For further reducing error functioin we may add fractions of correction divisor to the correction divisor itself.
Choose $G_{n}[2]=\frac{1}{\left\{2(n+1)^{2} 1^{2}\right\}+\frac{A_{1}}{\left.\left\{2(n+1)^{2}+1^{2}\right\}+x\right\}}}$ where A_{1} and X are any two real numbers.
Then it can be verified that absolute value of the error function is a minimum function of n for $A_{1}=-3$ and $x=8$.
Thus $G_{n}[2]=\frac{1}{\left\{2(n+1)^{2}+1^{2}\right\}_{\frac{1^{2}(1 / 3)}{\left\{2(n+1)^{2}+3^{2}\right\}}}}$ and it is the second order correction function.
Now for reducing error choose

$$
G_{n}[3]=\frac{1}{\left\{2 n+1_{2}+1^{2}\right\}-\frac{1^{2}(1.3)}{\left\{2(n+1)^{2}+2^{2}\right\}+\frac{A_{2}}{\left\{2(n+1)^{2}+2^{2}\right\}+x}}}
$$

It can be proved that $\left|E_{n}\right|$ is minimum for $A_{2}=-60$ and $x=16$.

Thus the third order correctiion function is

$$
G_{n}[3]=\frac{1}{\left\{2(n+1)^{2}+1^{2}\right\} \frac{1^{2}(1.3)}{\left\{2(n+1)^{2}+3^{2}\right\}_{\frac{2^{2}(3.5)}{\left\{2(n+1)^{2}+5^{2}\right\}}}} .}
$$

Similarly the fourth order correction function is

$$
G_{n}[4]=\frac{1}{\left\{2(n+1)^{2}+1^{2}\right\}} \frac{1^{2}(1.3)}{\left\{2(n+1)^{2}+3^{2}\right\}-\frac{2^{2}(3.5)}{\left\{2(n+1)^{2}+5^{2}\right\}_{\frac{3^{2}(5.2)}{\left\{2(n+1)^{2}+7^{2}\right\}}}} . . .}
$$

In general, the $? k^{\text {th }}$ order correctiion function is

$$
\begin{aligned}
G_{n}(k)= & \frac{1}{\left\{2(n+1)^{2}+1\right\}}-\frac{1^{2}(1.2)}{\left\{2(n+1)^{2}+3^{2}\right\}}-\frac{2^{2}(2.5)}{\left\{2(n+1)^{2}+5^{2}\right\}} \\
& -\frac{2^{2}(5.7)}{\left\{2(n+1)^{2}+7^{2}\right\}}-\cdots-\frac{(k-1)^{2}(2 k-2)(2 k-1)}{\left\{2(n+1)^{2}+(2 k-1)^{2}\right\}}
\end{aligned}
$$

Continuing this process we get the correction functions follow an infinite continued fractioin pattern

$$
\frac{1}{\left(2(n+1)^{2}+1^{2}\right)}-\frac{1^{2}(1.3)}{\left(2(n+1)^{2}+3^{2}\right)}-\frac{2^{2}(3.5)}{\left(2(n+1)^{2}+5^{2}\right)}-\frac{3^{2}(5.7)}{\left(2(n+1)^{2}+7^{2}\right) \cdots}
$$

4. Application

For $n=10$, the series approximation after applying the correction functions are given below.
We $2 \log 2-1=0.3862943611$, using a calculator..

Correction function	$\left.S_{n}+(-1)^{n} G\right)_{n}$
Without correction function	0.3821789321
$G_{n}[1]$	0.3863283098
$G_{n}[2]$	0.3862943611
$G_{n}[3]$	0.3862943611

5. Conclusion

The correction functions are the successive continued fraction. Thus the accuracy can be improved.

References

[1] Knopp K., Theory and Application of Infinite Series, Blackie and Son, (London and Glasgow.
[2] Sankara and Narayana, Lilavati of Bhaskaracharya with the Kriyakramakari, an elaborate exposition of the rationals with introduction and appendices (sd) K. V. Sarma (Visvesvaranand Vedic Research Institute, Hushiarpur), (1975), 386-391.
[3] Mallayya V. M., Proceedings of the Conference on Recent Trends in Mathematical Analysis, Allied Publishers Pvt. Ltd. ISBN 81-7764-399-1, (2003).
[4] Hardy G. H., A Course of Pure Mathematics, (Tenth Edition), Cambridge at the University Press, (1963)
[5] Knopp K., Infinite Sequences and Series, Dover (1956).

